
1.  Introduction
Clouds play critical roles in the weather conditions and in the global energy and water budgets that regulate the 
climate of the Earth (Houze, 2014; Lamb & Verlinde, 2011). The formation and evolution of clouds have signif-
icant impacts on precipitation forecasts in numerical weather prediction (Baldauf et al., 2011; Bauer et al., 2015; 
Morrison & Grabowski, 2008; Seifert & Beheng, 2005). Clouds-radiation interactions are among the most chal-
lenging aspects of climate modeling (Stephens et al., 2012; Trenberth et al., 2009; Wild et al., 2019). Making 
progress on any of these problems requires improving the representation of clouds in atmospheric models, 
which in nearly all practical weather and climate models is done through bulk microphysical parameterization 
(Kogan, 2013; Morrison & Gettelman, 2008; Nogherotto et al., 2016).

The Global Forecast System (GFS) at the National Centers for Environmental Prediction (NCEP) used the prog-
nostic cloud microphysics scheme developed by Zhao and Carr (1997) from 1995 to 2019. Improving upon the 
very simple large-scale saturation adjustment scheme (Hoke et al., 1989) used in the early versions of GFS, this 
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path. The predictions are improved even further by the use of reanalysis aerosol data to calculate CDNC, and 
also by using the more realistic PSD available in GFDL MP v3. However, the upgrade of the GFDL MP shows 
little impact on the precipitation prediction. Degradations caused by the new scheme are discussed and provide 
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Plain Language Summary  Weather and climate models represent “microphysical” (MP) 
cloud and precipitation processes by assuming a certain distribution of particle sizes and then computing 
how the distributions affect transformations of one type of particle (cloud droplets, raindrops, ice crystals, 
snowflakes, etc.) into another. These schemes also assume the concentrations of the particulate matter (both 
naturally-occurring and human-made, such as soot, sulfate, dust, sea salt, etc.) onto which water condenses or 
ice freezes. One scheme that we use for global weather prediction, the Geophysical Fluid Dynamics Laboratory 
cloud microphysics scheme, has been recently upgraded to improve the consistency and realism of these 
processes, including more realistic cloud droplet size distributions, and use a more accurate time-and-space 
count of sulfate particles to calculate the number of cloud droplets. We find that this upgrade significantly 
improves global weather predictions, especially of the large-scale weather patterns and their clouds and 
precipitation.
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computationally-inexpensive prognostic cloud microphysics scheme explicitly calculates a single cloud conden-
sate species (Zhao et al., 1997) and uses a diagnostic partitioning between liquid and ice content and of precip-
itation. Forecasts using the Zhao and Carr (1997) scheme instead of the Hoke et al. (1989) diagnostic scheme 
improved the forecast skill of precipitation and reduced root-mean-square errors of specific humidity below 
800 hPa and above 500 hPa (Zhao et al., 1997). However, the oversimplified treatment of cloud water and cloud 
ice excludes many microphysical processes and limits the realism and accuracy of cloud predictions and latent 
heating.

As computational resources have expanded in recent decades, more sophisticated cloud microphysics schemes 
have been developed and used in weather and climate models. Some studies have shown that by using a more 
comprehensive cloud microphysics scheme, one can achieve better weather prediction and climate simulation 
(Guo et al. (2021), Khain et al. (2015) and references therein). In 2010, the European Centre for Medium-Range 
Weather Forecasts (ECMWF) replaced the ancient Tiedtke  (1993) scheme with the elegant Forbes and 
Tompkins (2011), Forbes et al. (2011) prognostic scheme for the Integrated Forecast System (IFS). The National 
Center for Atmospheric Research upgraded the Rasch and Kristjánsson (1998) prognostic condensate and precip-
itation scheme to the well-known Morrison and Gettelman (2008) scheme for the Community Atmosphere Model 
version 5 in 2012. The Geophysical Fluid Dynamics Laboratory (GFDL) also implemented this scheme into the 
GFDL AM4 climate model (Guo et al., 2021) replacing the simpler Rotstayn-Klein cloud microphysics scheme 
(Jakob & Klein, 2000; Rotstayn, 1997; Rotstayn et al., 2000). After extensive evaluation, NCEP chose to replace 
the Zhao and Carr (1997) cloud microphysics scheme with the GFDL cloud microphysics scheme (GFDL MP), 
used in GFDL's weather prediction models (Chen & Lin, 2013; Zhou et al., 2019), in the GFS upgrade of June 
2019. The goal of this upgrade was to improve weather prediction through a better representation of microphys-
ical processes.

The GFDL MP is a five-category, single-moment bulk microphysics scheme originally designed for improved 
simulation of weather systems, extreme events (especially tropical cyclones), and atmospheric variability. The 
GFDL MP predicts two liquid categories (cloud water and rain) and three ice categories (cloud ice, snow, and 
graupel or hail). Zhou et al.  (2019) and Harris, Zhou, et al.  (2020) have described key features of the GFDL 
MP, including thermodynamic consistency with the dynamical core, fast and stable sedimentation processes, 
and tight coupling between dynamics and physics. The GFDL MP is used in the operational GFS version 15 
and 16 (Huang et al., 2021; Patel et al., 2021; Tong et al., 2020) and several other weather and climate models, 
including GFDL radiative-convective equilibrium (RCE) simulations within a limited domain (Jeevanjee, 2017), 
the GFDL High-resolution Atmosphere Model (HiRAM; Chen and Lin  (2011), Chen and Lin  (2013), Gao 
et al.  (2017, 2019), Harris et al.  (2016)), the GFDL System for High-resolution prediction on Earth-to-Local 
Domains (SHiELD; Harris, Zhou, et al. (2020)), the National Oceanic and Atmospheric Administration's Hurri-
cane Analysis and Forecast System (HAFS; Dong et al. (2020); Hazelton et al. (2021)), the Chinese Academy 
of Sciences Flexible Global Ocean-Atmosphere-Land System Model (He et  al.,  2019; Li et  al.,  2019; Zhou 
et al., 2015), and the National Aeronautics and Space Administration Goddard Earth Observing System (GEOS) 
version 5 (Arnold et al., 2020).

The principal development of the GFDL MP is within SHiELD at GFDL. Although the performance of SHiELD 
has gradually improved over the years with the continuous upgrades of the GFDL MP, cloud, precipitation, and 
radiation predictions are still challenging. For example, ice cloud fraction is under-predicted by about 12% and 
so the long-wave radiation at the top of the atmosphere is significantly over-estimated by about 8 W m −2. Liquid 
cloud fraction is also significantly under-predicted over the global oceans. In addition, SHiELD tends to predict 
excessive light and extreme precipitation and under-predict medium precipitation (Harris, Zhou, et al., 2020). 
Khain et al. (2015), in a broad review of the literature, found that precipitation rate, type of precipitation (liquid 
or ice), and spatial distributions of precipitation in global forecast systems were found to be strongly dependent 
on the shape of the particle size distribution (PSD). In another review, Fan et al. (2016) found that aerosol-cloud 
interactions have significant impacts on radiative forcing, precipitation, extreme weather, and large-scale circula-
tion. From this, we expect that improvements to the PSD and prescribed aerosol concentrations used by the GFDL 
MP could significantly improve simulation quality and prediction skills in these models.

This paper aims to document the most recent version 3 of the GFDL MP and understand its impacts on weather 
prediction skills and biases. In particular, we will describe the impacts of the more realistic PSD and the use of 
the time-and-space varying climatological aerosol for cloud droplet number concentration (CDNC) on large-scale 
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height, temperature, and humidity predictions, and on cloud and precipitation predictions. This paper will also 
serve as a reference for future model and parameterization development.

The rest of the paper is organized as follows. Section 2 briefly introduces the SHiELD model used in this study. 
Section 3 documents the upgrade of the GFDL MP in detail. Section 4 describes the model setup and experiments 
for this study. Section 5 presents the upgraded GFDL MP's impacts on weather prediction skills and biases. 
Section 6 demonstrates the impacts of the realistic PSD and the use of climatological aerosol for CDNC on 
weather prediction. Finally, we end with a summary and discussion in Section 7.

2.  SHiELD Model Description
The model used in this study is the GFDL global weather model SHiELD. SHiELD, previously called fvGFS 
(finite-volume Global Forecast System; Chen, Lin, Magnusson, et al.  (2019), Chen, Lin, Zhou, et al.  (2019), 
Hazelton et al. (2018), Zhou et al. (2019)), was developed as a prototype of the Next-Generation Global Predic-
tion System of the National Weather Service and the broader Unified Forecast System (UFS) (Harris, Zhou, 
et al., 2020). SHiELD focuses on medium-range weather (up to 10 days) prediction, but it can also be used for 
sub-seasonal to seasonal (S2S; between 2 weeks and one season) (Harris, Zhou, et al., 2020) and convective-scale 
(a few hours) (Harris et al., 2019) predictions as well. Notably, advances in SHiELD have migrated into UFS 
models slated for operational implementations at NCEP, including the GFS version 15 and version 16.

SHiELD uses the non-hydrostatic solver of the Finite-Volume Cubed-Sphere Dynamical Core (FV3) developed at 
GFDL (Harris & Lin, 2013; Harris, Zhou, Chen, & Chen, 2020; Harris, Chen, et al., 2020; Putman & Lin, 2007; 
S. Lin, 2004). The physical parameterizations in SHiELD originated from that in GFS version 14 (Chen, Lin, 
Magnusson, et al., 2019), but contains substantial updates: In particular the simple microphysics scheme of Zhao 
and Carr (1997) and cloud fraction scheme of Xu and Randall (1996) are replaced by the inline GFDL cloud 
microphysics (Harris, Zhou, et al., 2020; Zhou et al., 2019). We have also redesigned cloud-radiation interaction 
to combine the cloud microphysics processes and cloud radiative properties. To incorporate atmosphere-ocean 
interactions, we have implemented a mixed layer ocean based on Pollard et al. (1973). This simple ocean model 
calculates the mixed layer depth and temperature within that mixed layer as prognostic variables, driven by 
surface wind stress and heat fluxes from the atmosphere together with a nudging toward climatology applied 
to the mixed layer temperature and mixed-layer depth (Harris, Zhou, et al., 2020). In the version of SHiELD 
that is used in this paper, the convection schemes (Han et al., 2017), planetary boundary layer scheme (Han & 
Bretherton, 2019), and land surface model (Ek et al., 2003) are all updated to synchronize the current operational 
GFS version 16.

3.  Cloud Microphysics Parameterization
The GFDL MP has its origins in an earlier scheme originally developed for seasonal hurricane prediction in 
HiRAM (Chen & Lin, 2013), which itself was based on the Y. Lin et al. (1983) taken from the GFDL ZETAC 
model (Pauluis & Garner, 2006). The first version of the GFDL MP (GFDL MP v1; Zhou et al. (2019)), was 
mainly developed to support the early versions of SHiELD and what became the FV3-based GFS version 15. This 
was a split cloud microphysics scheme in which the fast phase changes were built within the FV3 dynamical core. 
GFDL MP v1, with some minor upgrades, is still in use in the operational GFS version 16 and GFS ensemble 
version 12. GFDL MP v2 (Harris, Zhou, et al., 2020) was developed with an option to be run entirely within 
the FV3 dynamical core. For this reason, we call this capability “inline microphysics”. Most recently, the GFDL 
MP in SHiELD has been dramatically updated and will be referred to as GFDL MP v3 because it is significantly 
different from the second version. Compared with the GFDL MP v2, the code of the GFDL MP v3 is entirely 
reorganized, optimized, and modularized into functions. All scientific updates are described in Appendix A.

The most significant updates in the GFDL MP v3 are the revised PSD and the overall physical consistency 
between processes. First, the PSDs for all five hydrometeor categories are redefined as a gamma distribution to 
mimic observed PSDs. As a result, the cloud water and cloud ice are no longer mono-dispersed as in the GFDL 
MP v2. The precipitation particles, for example, rain, snow, and graupel, or hail, still follow the exponential 
distribution as suggested by most observations and literature (Khain et al. (2015) and references therein), and 
which is a special case of the gamma distribution. Along with the revised PSD, all microphysical processes, 
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including accretion, evaporation, sublimation/deposition, and freezing/melting, have been re-formulated to use 
the new PSD. This ensures microphysical consistency and easily permits introductions of new PSDs, microphysi-
cal processes, and multi-moment distributions. The details of these updates are described in the following subsec-
tion. Due to the introduction of the more realistic PSD and the reformation of many microphysical processes, the 
computational runtime of the microphysics scheme increases by about 20%, but only increases the total SHiELD 
runtime by about 2%. We feel this is an acceptable cost given the substantial skill improvements we describe 
below.

3.1.  Particle Size Distribution (PSD)

The PSD describes the number concentration of a cloud particle as a function of the particle size. Common PSDs 
are mono-dispersed, exponential, gamma, or log-normal distribution (Straka, 2009). All cloud properties and 
cloud processes can then be computed by analytically integrating different products of the PSDs. In the GFDL 
MP v3, the PSD of each hydrometeor category is defined by a gamma distribution containing three parameters:

� (�) = �0��−1 exp (−��) ,� (1)

where n0 (m −3−μ) is the intercept parameter, μ (unitless) is the spectral shape parameter, λ (m −1) is the slope 
parameter, and D (m) is the particle diameter. When the spectral shape parameter μ equals 1, the gamma distribu-
tion becomes an exponential distribution. In a single-moment bulk cloud microphysics scheme with prognostic 
mass specific ratio q (kg kg −1), the intercept parameter n0 and spectral shape parameter μ are predefined constants, 
while the slope parameter λ can be derived from n0, μ, and q. The values of n0 and μ for each hydrometeor cate-
gory of the GFDL MP v3 are listed in Table 1. Note that all hydrometeor categories are assumed as spherical 
particles in the GFDL MP.

The PSD depends on cloud content (ρq) or the mass specific ratio of cloud (q) through the slope parameter 
(λ, Equation B7). Figure 1 shows the particle size distributions used in the GFDL MP v3, including that cloud 
water droplet number, follows a gamma distribution while all other hydrometeor categories follow the exponen-
tial distribution. The particle numbers increase with cloud content increases at a fixed cloud diameter. Cloud 
water  droplets (Figures 1a and 1b) have sizes between 6 and 40 μm, with a peak droplet number at around 20 μm. 
Cloud water droplet number is three orders of magnitude less when the cloud water content drops from 10 g 
m −3 to 10 −4 g m −3. Following the exponential distribution, cloud ice particle number monotonically decreases 
as particle size increases (Figures 1c and 1d). The distributions of rain, snow, graupel, and hail particle numbers 
are similar (Figure  1e-1l), except that rain has the largest particle number while hail has the lowest particle 
number because rain (hail) has the highest (lowest) intercept parameter (n0). Rain, snow, graupel, and hail 
particle numbers approach zero at diameter between 2000 to 6000 μm, depending on the specific species and 
water content. Very high water contents are needed to produce non-negligible numbers of the largest particles. 

Cloud water Cloud ice Rain Snow Graupel Hail

n0 1.2 × 10 66 1 × 10 10 8 × 10 6 3 × 10 6 4 × 10 6 4 × 10 4

μ 11 1 1 1 1 1

ρ′ 1 × 10 3 9.17 × 10 2 1 × 10 3 1 × 10 2 4 × 10 2 9.17 × 10 2

α 3 × 10 7 11.72 842 4.8 40.74 61.68445

β 2 0.41 0.8 0.25 0.5 0.5

Deff 10–20 20–300 20–20,000 300–20,000 300–20,000 300–20,000

V 0–0.01 0–1 0–12 0–2 0–12 0–12

Note. The valid ranges of effective diameter (Deff, unit: × 10 −6 m) and terminal velocity (V, unit: m s −1) are at the bottom 
of this table. Parameters n0 and μ for cloud water, cloud ice, rain, snow, and graupel or hail are derived based on Martin 
et al. (1994), Fu (1996), Marshall and Palmer (1948), Gunn and Marshall (1958), and Houze et al. (1979) or Federer and 
Waldvogel (1975), respectively. Parameters α and β for cloud water, cloud ice, rain, snow, and graupel or hail follow Ikawa and 
Saito (1991), McFarquhar et al. (2015), Liu and Orville (1969), Straka (2009), and Pruppacher and Klett (2010), respectively.

Table 1 
The Intercept Parameter (n0, Unit: m −3−μ), Spectral Shape Parameter (μ, Unit: 1), Density of Hydrometeor Category (ρ′, 
Unit: kg m −3), Parameter α (Unit: m 1−β s −1) and β for Each Hydrometeor Category of the GFDL MP v3
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While  cloud ice particle number still follows the exponential distribution (μ = 1) as in Fu (1996) that is used to 
calculate cloud ice radiative properties, recent studies (McFarquhar et al., 2015) find that cloud ice is found to 
follow the gamma distribution (μ > 1). Development using the gamma distribution for cloud ice is ongoing.

Once the PSD is defined, we can derive the particle concentration (N), effective diameter (Deff), optical extinction 
(β), mass specific ratio (q), radar reflectivity factor (Z), and terminal velocity (V) by integrating the PSD over all 
diameters. Details of calculating these quantities characterizing cloud parameters can be found in Appendix B. 
Since the PSDs are redefined, all cloud microphysical processes are reformulated accordingly to ensure overall 
microphysical consistency and easily permit future introductions of new PSD, microphysical processes, and 
multi-moment distributions. Details of the microphysical processes can be found in Appendix C.

How does the revised PSD for cloud particles affect the effective diameter and terminal velocity? The PSD of 
precipitation particles (e.g., rain, snow, graupel, or hail) remains the same from GFDL MP v2 to GFDL MP v3, 
but the PSD of cloud water and cloud ice has been changed from mono-dispersed distribution to gamma and 
exponential distributions, respectively. Figure 2 demonstrates the differences in effective diameter and terminal 
velocity between GFDL MP v2 and GFDL MP v3. The effective diameter of cloud water in GFDL MP v3 (solid 

Figure 1.  (a, c, e, g, i and k) particle size distribution (PSD) (n, unit: m −3 μm −1) as a function of diameter (D, unit: μm) and cloud content (ρq, unit: g m −3). (b, d, f, h, j 
and l) PSD as a function of diameter at three selected cloud water content amounts. (a and b) are cloud water (qw), (c and d) are cloud ice (qi), (e and f) are rain (qr), (g 
and h) are snow (qs), (i and j) are graupel (qg), and (k and l) are hail (qh).
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blue line in 2a) mostly lies between 10 and 20 μm in the cloud content between 10 −4 and 10 1 g m −3. However, the 
effective diameter of cloud water in GFDL MP v2 (dashed blue line in 2a) exhibits a larger gradient as a function 
of cloud content, leading to lower (higher) than the predefined range limit of cloud water effective diameter when 
there is little (much) cloud content. On the contrary, the gradient of cloud ice effective diameter in GFDL MP v2 
(dashed red line in 2a) is smaller compared with the one in GFDL MP v3 (solid red line in 2a) and mostly inside 
the predefined range limit. Since a smaller cloud effective diameter produces a stronger radiative effect and vice 
versa, these results indicate a stronger shortwave radiative effect and a weaker longwave radiative effect when 
there is little cloud content, while a weaker shortwave radiative effect and a stronger longwave radiative effect 
when there is much cloud content. As for the terminal velocity, although the cloud water in GFDL MP v3 (sold 
blue line in 2b) has a greater value, most of which is capped by the predefined 0.01 m s −1 upper bound. Since the 
terminal velocity of cloud water is very smaller compared to other hydrometeor categories, its impact on cloud 
prediction is neglectable. As for cloud ice, its terminal velocity in the GFDL MP v3 (solid red line in 2b) is about 
0.2 m s  − 1 larger than that in the GFDL MP v2 (dashed red line in 2b) in the cloud content between 10 −4 and 10 1 g 
m −3. The difference in cloud ice terminal velocity will change cloud ice content prediction and cloud ice-involved 
microphysical processes, for example, accretion, deposition, and melting.

3.2.  Cloud Droplet Number Concentration (CDNC)

Among all microphysical processes, cloud water to rain autoconversion (Paut, unit: kg kg −1 s −1) follows Manton 
and Cotton (1977):

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =
0.104𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝜌𝜌

4∕3

𝜐𝜐(𝑁𝑁𝑐𝑐𝜌𝜌′)
1∕3

𝑞𝑞7∕3𝐻𝐻 (𝑞𝑞 − 𝑞𝑞𝑐𝑐) ,� (2)

𝑞𝑞𝑐𝑐 =
𝑁𝑁𝑐𝑐

𝜌𝜌

4

3
𝜋𝜋𝜋𝜋′𝑅𝑅3

𝑐𝑐 .� (3)

Figure 2.  (a) Effective diameter (Deff, unit: μm) and (b) terminal velocity (V, unit: m s −1) as a function of cloud content (ρq, unit: g m −3). Solids lines are Deff or V 
computed from PSD in the GFDL MP v3; dashed lines are those empirically diagnosed in the GFDL MP v2. Blue lines represent cloud water; red lines represent cloud 
ice. Blue shaded area is the range limit of Deff or V for cloud water; Red shared area is the range limit of Deff or V for cloud ice.
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Here, Eaut = 0.5 is the collection efficiency, υ = 1.717 × 10 −5 m 2 s −1 is the dynamics viscosity of air, Nc (m −3) is 
the CDNC, Rc = 10 × 10 −6 m and qc (kg kg −1) are the critical mean cloud droplet radius and the mass mixing ratio 
respectively, and H is the Heaviside unit step function. Based on this equation, with the increase of Nc, the rate of 
the cloud water to rain autoconversion decreases, resulting in more cloud water and less rain, and vice versa. The 
GFDL MP does not explicitly perform droplet activation but instead directly uses the pre-calculated CDNC (Nc). 
For simplicity, the GFDL MP v2 only used two single fixed values of Nc over the land (300 cm −3; Tripoli and 
Cotton (1980)) and over the ocean (100 cm −3; Rotstayn (1997)), that the aerosol-related microphysical processes 
and the aerosol-cloud interactions cannot be properly represented.

In the GFDL MP v3, the aerosol data in the Modern-Era Retrospective analysis for Research and Applications, 
version 2 (MERRA2) (Rienecker et al., 2011) from the National Aeronautics and Space Administration (NASA) 
Goddard Earth Science Data Information and Services Center (GES DISC) is adopted. This aerosol product is 
one of the reanalyzes from the Goddard Earth Observing System Model, Version 5 (GEOS-5) data assimilation 
system (Gelaro et al., 2017; Randles et al., 2017). We combined the 3-hourly aerosol data from 2015 to 2020 to 
create a 12-month climatological data set consisting of 72 vertical levels from the surface to about 1.3 Pa at the 
top. The horizontal resolution is 0.5 by 0.625°. The species of sulfate, which is a subset of MERRA2 aerosol, is 
converted to CDNC using Boucher and Lohmann (1995)'s formula:

𝑁𝑁𝑐𝑐 =

⎧⎪⎨⎪⎩

102.24
(
109𝜌𝜌𝜌𝜌𝑎𝑎

)0.257
× 106 land,

102.06
(
109𝜌𝜌𝜌𝜌𝑎𝑎

)0.480
× 106 ocean.

� (4)

where qa (unit: kg kg −1) is the mass specific ratio of sulfate aerosol from MERRA2.

Figures 3a and 3b show the geographic distribution of surface climatological CDNC derived from MERRA2 and 
its difference from the values used in the GFDL MP v2 (300 and 100 cm −3 over the land and the ocean, respec-
tively). In most of the land area except for southeastern China and northern India, the CDNC from MERRA2 is 
below 300 cm −3. The CDNC in Antarctica is below 100 cm −3. Over most of the ocean area except for the offshore 
of Asia and Europe, the east coast of North America, and the northern Pacific Ocean, the CDNC from MERRA2 
is below 100 cm −3. Only the CDNC around the offshore of China and India can reach above 300 cm −3. The above 
comparison indicates that the fixed values of CDNC used in the GFDL MP v2 are substantially overestimated in 
most areas of the globe. Besides the horizontal variability, the MERRA2 CDNC also changes vertically and with 
seasonal variation. Figure 3c shows that the vertical mean distributions and ranges are decreasing with height, 
and the values are much smaller than the fixed values used in the GFDL MP v2. The CDNC in the land is only 
about 150 cm −3 near the surface, and it could be lower than 100 cm −3 above 500 hPa. The CDNC over the ocean is 
generally half value or less than the fixed value of 100 cm −3. From Figure 3d, we can see that the maximum (mini-
mum) surface CDNC shows in the winter (summer) regardless of surface type. Noticeable seasonal variation is 
found in the Amazon Basin, Europe, India, East Asia and its surrounding ocean, and over the Southern Ocean 
(see Figure S1 in Supporting Information S1). The impact of the seasonal cycle of CDNC on weather prediction 
will be discussed in the following sections.

4.  Model Setup and Experiments
In order to demonstrate the impact of the GFDL MP upgrade, we evaluate a suite of 10-day weather predictions 
using SHiELD. These predictions are initialized from the operational GFS v15 analyses every five days from 25 
June 2019 to 17 March 2021 (124 individual 10-day forecasts). The current version of SHiELD does not include 
data assimilation, so the initial conditions are from the operational GFS analysis. The ERA5 reanalysis (Hersbach 
et al., 2020) is then used for the global weather prediction evaluation. ERA5 is produced using 4D-Var data assim-
ilation and model forecasts in CY41R2 of the ECMWF IFS, with 137 hybrid sigma/pressure (model) levels in the 
vertical and the top-level at 0.01 hPa. Here the 31-km 6-hourly ERA5 datasets at the pressure levels of 100, 200, 
250, 500, 700, 850, and 1000 hPa are used to represent the weather and atmospheric condition from Tropopause 
to the surface. Here we focus on geopotential height, air temperature, and specific humidity, which are used to 
demonstrate the model's capability for large-scale weather prediction.
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To comprehensively evaluate the cloud prediction, version 2 of COSP (Cloud Feedback Model Intercomparison 
Project Observation Simulator Package; Swales et  al.  (2018)) has been recently implemented into SHiELD. 
The COSP simulates the retrievals for several passive and active sensors by using the model data (e.g., cloud 
water content at model levels). Therefore, we can directly compare the output from COSP of SHiELD against 
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation; Bodas-Salcedo et  al.  (2011), 
Chepfer et al. (2010)) cloud fraction product. The total column of cloud liquid water, rainwater, cloud ice water, 
and snow water from ERA5 is also used to evaluate the liquid and ice water paths predicted in SHiELD. Note 
that graupel is not included in ERA5. For both SHiELD and ERA5, the total column cloud liquid water and 
the rainwater are combined as the liquid water path, and the total column cloud ice water and the snow water 
are combined as the ice water path. The model's precipitation prediction is evaluated against the Integrated 
Multi-satellitE Retrievals for GPM (IMERG) product (Hong et al., 2004), which combines information from the 
Global Precipitation Measurement (GPM) satellite constellation to estimate precipitation over the majority of the 
Earth's surface.

Figure 3.  Geographic distribution of (a) surface climatological cloud droplet number concentration (CDNC) (cm −3) calculated from Modern-Era Retrospective analysis 
for Research and Applications, version 2 (MERRA2), (b) the difference between the CDNC from MERRA2 and the fixed CDNC values used in the GFDL MP v2. 
Panel (c) is the vertical profiles of climatological CDNC from MERRA2 (solid) and fixed CDNC values used in the Geophysical Fluid Dynamics Laboratory cloud 
microphysics scheme (GFDL MP) v2 (dashed). Panel (d) is the seasonal cycle of climatological surface CDNC from MERRA2 (solid) and fixed CDNC values used 
in the GFDL MP v2 (dashed). Red lines represent CDNC in the land area, blue lines represent CDNC over the ocean. The shaded area is its standard deviation. The 
numbers in panels (a and b) are the global maximum, minimum, land mean, and ocean means of CDNC.
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Table 2 listed all experiments done for this study. OLD used GFDL MP v2 
with constant CDNCs over the land and ocean respectively and the original 
PSD for all hydrometeor categories. CTRL used GFDL MP v3 with the same 
PSD and CDNC as OLD. The comparison between CTRL and OLD shows 
the impact of code updates and scientific updates described in Appendix A. 
In the following section, CTRL is used as a reference to evaluate the weather 
prediction skill of the GFDL MP v3. In particular, CTRL is compared 
against simulations with the more realistic PSD of cloud water and cloud 
ice (CPSD), a time-and-space varying climatological background aerosol for 
CDNC calculation (AERO), and simulations with both (CPSD_AERO).

5.  Model Verification
Figure 4 shows a straightforward comparison between OLD and CTRL on a 
scorecard. It shows that CTRL has significantly higher anomaly correlation 

coefficients (ACCs) of geopotential height at most pressure levels up to 7 days of forecast. The reduction of 
geopotential height bias from OLD to CTRL is significant throughout the 10 days of forecast. Although the ACCs 
of CTRL are lower than those of OLD after day seventh, this difference is insignificant. The above improve-
ment of geopotential height prediction (higher ACC of geopotential height) is encouraging for the development 

of SHiELD because it indicates a general improvement of the atmospheric 
circulation and heating in the Troposphere, which is closely related to our 
daily weather. It is also found in Figure 4 that the temperature prediction of 
CTRL is generally better than OLD. Still, the ACCs are higher in the first few 
days and lower in the eight to 10-day forecast, while the bias is significantly 
reduced during the entire 10-day forecast. Unfortunately, temperature predic-
tion at 500 hPa and 1000 hPa are degraded in CTRL (shown as lower ACCs 
and larger biases). Further analyses on the 10-day temperature evolution and 
its 10-day averaged geographical distribution (see supplemental Figures S2 
and S3 in Supporting Information S1) show a globally warm bias at 500 hPa 
and 1000 hPa. Since CTRL predicts a generally warmer Troposphere than 
OLD and the 500 hPa and 1000 hPa temperature in OLD already have a posi-
tive bias, the additional warming further increases the positive bias at these 
two pressure levels. From the scorecard, the specific humidity prediction is 
generally better in the upper Troposphere but worse in the lower Troposphere 
when comparing CTRL to OLD. However, compared to the magnitude and 
variation of specific humidity during the 10 days of forecasts, their differ-
ence at the lower Troposphere is relatively small and could be negligible (see 
Figures S2 and S3 in Supporting Information S1).

Figure 5 shows the cloud fraction comparison between model prediction and 
CALIPSO observation. In Figure 5e, we can see that OLD predicts similar 
geographical distribution and magnitude of high cloud fraction as CALIPSO. 
The predicted global mean high cloud fraction is slightly smaller than that of 
the CALIPSO (with a bias of −0.006). As shown in Figure 5i, the global mean 
bias further reduces to 0.001 (positive) in CTRL, but the root-mean-square 
error (RMSE) remains the same (0.103). It can be found in the high cloud 
fraction difference panel (Figure 5m) that there is a significant difference in 
high cloud fraction over the tropics ocean area. Different from the high cloud 
fraction, both middle and low cloud fractions are under-predicted in either 
OLD or CTRL (Figure 5f, 5g, 5j and 5k). As shown in Figures 5f and 5j, 
the predicted middle cloud fraction is consistently lower in the model than 
CALIPSO, with a maximum reduction of cloud fraction in Southern Amer-
ica (also see Figure S4 in Supporting Information S1). Comparing OLD and 
CTRL, the upgrade of GFDL MP only improves some of the middle cloud 

Experiment New PSD a New CDNC b GFDL MP

OLD v2

CTRL v3

CPSD × v3

AERO × v3

CPSD_AERO × × v3

 agamma distribution for cloud water and exponential distribution for cloud 
ice.  bCDNC are calculated from climatological aerosol.

Table 2 
List of Experiments in This Study

Figure 4.  The scorecard showing the comparisons between the Geophysical 
Fluid Dynamics Laboratory cloud microphysics scheme (GFDL MP) 
v3 (CTRL) and the GFDL MP v2 (OLD) in each meteorological field. 
Improvements (degradation) from CTRL are indicated in red (blue) squares, 
for example, higher (lower) anomaly correlation coefficient (ACC) or less 
(larger) bias. Darker colors mean the difference passes the 95% significance 
level. Square boxes in each grid cell from left to right are for the forecasts 
from day 1 to day 10. The letters h, t, and qv to the left represent geopotential 
height, temperature, and specific humidity, respectively, at pressure levels of 
100, 200, 250, 500, 700, 850, and 1000 hPa.
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fraction prediction, with the reduced global mean bias and RMSE. As shown in Figure 5n, most of the significant 
middle cloud fraction increment is over the ocean area in the middle to high latitude, especially over the Southern 
Ocean. The change of high cloud fraction in the tropics and middle cloud fraction in the middle to high latitude, 
where consists of a majority of ice cloud, is mainly due to the update of supersaturation calculation in the ice 
processes as described in Appendix A. Compared to the middle cloud fraction bias, the low cloud fraction bias 
is even larger (Figures 5g and 5k). The global mean bias of low cloud fraction is −0.194 and −0.197 in OLD and 
CTRL, respectively. As shown in Figure 5o, the most significant reduction of low cloud fraction in CTRL is in the 
high latitude land area. The low cloud fraction reduction is attributed to the change of temperature range for cloud 
water autoconversion as described in Appendix A. It allows cloud water autoconversion at a lower temperature. 
Due to the under-prediction of middle and low cloud fractions, the total cloud fraction is also under-predicted 
(Figures 5h and 5i). However, we can still see that the global mean bias and RMSE of total cloud fraction are 
reduced because of significant total cloud increment over the Southern Ocean (Figure 5p).

We further evaluate the liquid and ice water paths (compared with ERA5) and precipitation (compared with 
GPM) predictions. As shown in Figures 6a, 6d and 6g, SHiELD's predicted liquid water path is similar to ERA5 
regarding its geographical distribution. However, both OLD and CTRL over-predict the liquid water path around 
the extra-tropical storm track area with a positive bias of 7.328 g m −2 and 2.974 g m −2 respectively (also see 
Figure S5 in Supporting Information S1). Compared with OLD, the bias and RMSE are both notably reduced 
in CTRL. As shown in Figure 6j, most of the significant reduction of liquid water path with the value of about 
30 g m −2 is at the middle to high latitudes, where the model over-predicts the liquid water path. This is consistent 
with the low cloud fraction change shown in Figure 5o, which is mainly due to the temperature range change for 

Figure 5.  From left to right are the 10-day averaged high, middle, low, and total cloud fractions from (a–d) Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 
Observation (CALIPSO), (e–h) OLD, (i–l) CTRL, and (m–p) CTRL minus OLD. The numbers in the title of (a–d) are the global mean of cloud fraction (unitless), and 
(e–l) are the bias and root-mean-square error compared to CALIPSO. The dotted area in (m–p) is the area with a 95% significant difference.
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cloud water autoconversion. Compared with the ERA5, the geographical distributions of the ice water path are 
well-predicted in both OLD and CTRL (Figures 6b, 6e and 6h). The bias and RMSE of CTRL are only slightly 
smaller than those of OLD. Both values are about −9  g m −2. Not surprisingly, the difference between OLD 
and CTRL is insignificant, shown from the difference panel in Figure 6k. Regarding the precipitation forecasts 
(Figures 6f and 6i), both OLD and CTRL can well-predict the massive precipitation rates along the Intertropical 
Convergence Zone (ITCZ) area and in the extra-tropical storm track area. However, both OLD and CTRL predict 
slightly more precipitation (about 0.17 mm day − 1) globally. CTRL's precipitation prediction has a slightly larger 
bias and RMSE than OLD, but the differences are insignificant (Figure 6l).

Figure 6.  From left to right are the 10-day averaged liquid water path (LWP), ice water path (IWP), and precipitation rate (PRE) from (a–c) ERA5 or Global 
Precipitation Measurement (GPM), (d–f) OLD, (g–i) CTRL, and (j–l) CTRL minus OLD. The numbers in the title of (a–c) are the global mean of liquid water path or 
ice water path (unit: g m −2) or precipitation (unit: mm day −1), and (d–i) are the bias and root-mean-square error to ERA5 or GPM. The dotted area in (j–l) is the area 
with a 95% significant difference.
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6.  Impacts of PSD and CDNC on Weather Prediction
In this section, three sensitivity experiments (CPSD, AERO, and CPSD_AERO) are used to evaluate the impacts 
of the PSD in the GFDL MP v3, as well as the use of time-and-space varying prescribed climatological aerosol 
in calculating CDNC, on weather prediction. The scorecards of the comparison between CTRL and each of the 
sensitivity experiments are shown in Figure 7. It can be found that the ACCs of geopotential height in CPSD are 
higher than those in CTRL in the first 5-day forecast. Meanwhile, compared to CTRL, the biases of geopotential 
height prediction are significantly smaller during the entire 10-day forecast (Figure 7a). On the other hand, the 
temperature and specific humidity predictions in the CPSD are generally improved at levels lower than 500 hPa 
but significantly degraded at 500 hPa and above. The differences in the temperature ACC between the CPSD and 
CTRL are hard to quantify in the time evolution plots, but their difference in temperature biases are evident (see 
Figure S4 in Supporting Information S1). Compared to CTRL, the predicted temperature in CPSD is lower at 
200 and 250 hPa but higher at 500 hPa, and the predicted specific humidity in CPSD is lower at 100, 200, and 
250 hPa.

To understand the reason for the temperature and specific humidity decreasing at the middle to upper Tropo-
sphere (except that temperature at 500 hPa increases) in CPSD than CTRL, we first examine the cloud fraction 
prediction (Figure 8). CPSD predicted a similar amount of high cloud fraction to CTRL (Figure 8e). The biases 
of the high cloud fraction prediction in CPSD and CTRL are very close. The RMSE of the high cloud fraction 
prediction in CPSD is slightly larger than that in CTRL during the entire 10-day forecast (Figure 8a). In contrast, 
there is a significant increment of the RMSE of middle cloud fraction prediction up to 0.01 on day 10 in CTRL 
when compared to CPSD (Figure 8b). Comparing the bias of middle cloud fraction prediction shown in Figure 8f, 
the predicted middle cloud fraction is around 0.02 larger in CPSD than that in CTRL. It implies that more water 
vapor is deposited into solid hydrometeor to the middle clouds in CPSD. The associated latent heat releases 
and then warms up the air in the middle Troposphere. Due to the decrease of the water vapor in the upper Trop-
osphere, the longwave radiation absorption reduces. Meanwhile, the increasing middle cloud fraction further 
increases cloud top solar albedo enhancing the cloud top cooling in the above air. Therefore, the atmospheric 
temperature is lower in CPSD than in CTRL. These are consistent with what we found in the temperature and 
specific humidity prediction in Figure 7a.

The increases of the predicted cloud ice in CPSD are also shown by the ice water path (Figure 9e). The bias of 
ice water path prediction changes from −11 to 3 g m −2 from CTRL to CPSD. The bias of the absolute ice water 
path prediction is much smaller in CPSD compared to that in CTRL. On the other hand, the RMSE of ice water 
path prediction is much larger in CPSD than that in CRTL (Figure 9b). The significantly larger predicted ice 
water path in CPSD is due to the increases in the cloud ice terminal fall velocity, which is from the redefinition 

Figure 7.  Similar to Figure 4, but for comparison between (a) CTRL and CPSD, (b) CTRL and AERO, (c) CTRL and CPSD_AERO.
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Figure 8.  From left to right are the 10-day evolution of (a and e) high, (b and f) middle, (c and g) low, and (d and h) total cloud fractions of (blue) CTRL, (orange) 
CPSD, (green) AERO, and (red) CPSD_AERO. Top row is root mean square error (unit: 1); bottom row is bias (unit: 1). The shaded area is the area with a 95% 
significant difference to CTRL.

Figure 9.  From left to right are the 10-day evolution of (a and d) liquid water path, (b and e) ice water path, and (c and f) precipitation of (blue) CTRL, (orange) CPSD, 
(green) AERO, and (red) CPSD_AERO. Top row is root mean square error (unit: g m −2); bottom row is bias (unit: g m −2). The shaded area is the area with a 95% 
significant difference to the CTRL.
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of cloud ice PSD (Figure 2b). As a result, it brings more cloud ice sediment to lower levels, while the reduction 
of cloud ice at higher levels causes more deposition of water vapor. The improvement of low cloud fraction 
prediction (Figures 8c and 8g) possibly contributes to the improvement of the temperature and specific humidity 
prediction in the lower Troposphere (Figure 7a). The degradation of the precipitation prediction is small in CPSD 
(Figures 9c and 9f).

The upgrade of the CDNC calculation in AERO directly affects the autoconversion of cloud water to rainwater. 
Figure 7b shows that the prediction skill of geopotential height, temperature, and specific humidity are generally 
improved. Particularly, the ACCs of geopotential height substantially increase with significant bias reductions. 
Due to less produced CDNC in AERO than in CTRL, it is relatively easier for the cloud water to convert to rain 
and fall to the surface in AERO than in CTRL. Therefore, the low cloud fraction in AERO is reduced by about 
0.01 (Figure 8g), and the liquid water path is also significantly reduced by nearly 20 g m −2 (Figure 9d). The 
reduction of cloud fraction and the resultant reduced cloud albedo lead to a warmer surface. With a stronger 
surface heat exchange, the lower Troposphere is warmed up. Extra heat is transported from the lower Troposphere 
to the air above, inducing a warmer middle to upper Troposphere. It is relatively harder for the water vapor to 
condense or deposit in the warmer air. Therefore, the high and middle cloud fractions (Figures 8e and 8f) further 
decrease  by 0.04 and 0.02, respectively. Even with more cloud water to rain autoconversion in AERO than in 
CTRL, the changes of precipitation prediction are still minor (Figures 9c and 9f), which may be related to some 
compensation from the increase of convective precipitation.

Another feature of using the MERRA2 aerosol to calculate CDNC is that it has a seasonal cycle Figure 3d and 
also Figure S1 in Supporting Information S1. We further evaluate the impact of the seasonal cycle of CDNC on 
weather prediction. Since CDNC is mainly used in warm cloud microphysics, the forecast of 500 hPa geopotential 
height and 700 hPa temperature are evaluated. Figure 10 shows some seasonal variation on 500 hPa geopotential 
height and 700 hPa temperature forecast. In the first 4-day forecast, AERO exhibits significantly smaller RMSE 
than CTRL. RMSE difference in summer is larger than all other seasons, which correlates to the least CDNC in 
summer shown in 3days. It indicates less CDNC in favor of weather forecasts in the lower Troposphere. After 
4 day forecast, although the RMSE difference is much larger than that in the first 4 days, most of which are insig-
nificant. The ninth-to tenth-day forecast of 500 hPa geopotential height and 700 hPa temperature in spring is the 
exception. AERO's forecast is significantly better than CTRL's forecast.

Finally, the impacts of combining the more realistic PSD and the climatological aerosol calculated CDNC are 
evaluated (Exp. of CPSD_AERO). Figure 7c shows that AERO can improve the degradation of the forecast skill 
shown in CPSD. For example, the forecasts of the geopotential height of CPSD_AERO during the first 5 days are 
significantly improved compared to CTRL. Moreover, temperature forecasts at 250 and 500 hPa, and forecasts 
of  specific humidity at 100, 500, and 700 hPa are generally improved in CPSD_AERO. Generally speaking, there 
are more improved forecast fields than degraded ones in CPSD_AERO than in CTRL (Figure 7c). It is interest-
ing to find in Figure 8 that the high cloud fraction prediction in CPSD_AERO is quite close to AERO, but the 
middle, low, and total cloud fraction prediction in CPSD_AERO is in between CPSD and AERO. Differently, the 
prediction of the liquid water path of CPSD_AERO is close to AERO, but the ice water path of CPSD_AERO is 
close to CPSD. Since the update of the PSD alters many microphysical processes, but the update of the CDNC 
changes the cloud water to rainwater autoconversion only, it is difficult to explain these interesting findings. We 
leave these to further research.

In all experiments, we find that the change of PSD in the cloud water and the cloud ice or the use of climatological 
aerosol for CDNC calculation only exerts a minor impact on the precipitation prediction (Figures 9c and 9f). It is 
possibly due to the change of large-scale precipitation being small compared to the change of cloud content. In 
addition, the change of the large-scale precipitation could be compensated by an increase in convective precip-
itation. Additionally, precipitation can be influenced by microphysical processes that do not involve the change 
of PSD and CDNC.

7.  Summary and Discussion
This paper documents the third version of the Geophysical Fluid Dynamics Laboratory cloud microphysics 
scheme (GFDL MP v3) that is upgraded from the previous versions of the GFDL MP used in the Global Forecast 
System (GFS), the System for High-resolution prediction on Earth-to-Local Domains (SHiELD), and a broader 
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community through the UFS. Compared with the GFDL MP v2, the GFDL MP v3 is featured with the following 
upgrades: (a) the code has been reorganized, optimized, and modularized into functions; (b) the particle size 
distribution (PSD) used in the scheme for all five hydrometeor categories are redefined as gamma or expo-
nential distribution; (c) particle concentration, effective diameter, optical extinction, mass specific ratio, radar 
reflectivity factor, and terminal velocity are all redefined based on the new distributions; (d) accretion, evap-
oration, sublimation, deposition, melting, and freezing microphysical processes are all reformulated based on 
the new distributions; (e) constant cloud droplet number concentration (CDNC) is replaced with that calculated 
from climatological aerosols in the Modern-Era Retrospective analysis for Research and Applications, version 2 
(MERRA2). The GFDL MP v3 ensures an overall microphysical consistency and easily permits the future intro-
duction of new PSDs, microphysical processes, and multi-moment distributions.

The impacts of the GFDL MP upgrade item 1) on global weather, cloud, and precipitation predictions in SHiELD 
are comprehensively evaluated. The comparisons between the two sets of experiments show that GFDL MP v3 
significantly improves the geopotential height prediction up to 7 days in term of anomaly correlation coefficient 
(ACC) and throughout 10-day forecast in term of bias, which indicates general improvement of the atmospheric 
circulation and heating in the Troposphere. The temperature prediction is generally better in GFDL MP v3 than in 
GFDL MP v2. The specific humidity prediction is better in GFDL MP v3 than GFDL MP v2 in the upper Trop-
osphere but worse in the lower Troposphere. High, middle, and total cloud fractions predictions are improved in 
GFDL MP v3. Low cloud fraction prediction degrades in GFDL MP v3, but liquid water path prediction improves 
substantially. There is a minor change in the ice water path and precipitation prediction from GFDL MP v2 and 
GFDL MP v3. It is believed that the noticed degradation could be improved with further model development.

Figure 10.  From left to right are the root-mean-square error (RMSE) difference of (a–d) 500 hPa geopotential height and (e–h) 700 hPa temperature forecasts between 
AERO and CTRL in (a,e) winter (DJF: December, January, February), (b and f) spring (MAM: March, April, May), (c and g) summer (JJA: June, July, August), and 
(d and h) fall (SON: September, October, November). Blue/orange bars are the RMSE difference; blue bars depict negative values while orange bars depict positive 
values; black lines indicate the 95% significance levels; numbers under the blue bars are the values of the RMSE difference in the first 4-day forecast. Negative RMSE 
difference means AERO is better than CTRL in the forecast, and vice verses. RMSE difference inside the 95% significance levels means the difference is insignificant, 
and vice verses.
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Furthermore, the impacts of the GFDL MP upgrade items 2 to 5 are evaluated using the base GFDL MP v3 as a 
reference. The use of more realistic PSD and climatological aerosol calculated CDNC significantly improves the 
geopotential height prediction compared with the original PSD and constant CDNC. Temperature and specific 
humidity predictions at the upper Troposphere significantly degrade with the PSD upgrade, but are mixed with 
improvement and degradation with the CDNC upgrade. Among all upgrades, the PSD upgrade shows the best 
prediction of low and total cloud fractions but the worst prediction of high and middle cloud fractions, while the 
CDNC upgrade shows the best prediction of high and middle cloud fractions but the worst prediction of low and 
total cloud fractions. The combination of the PSD and the CDNC upgrades is generally excellent in cloud fraction 
prediction. The combination of the PSD and the CDNC upgrades shows the best liquid water path prediction 
with the lowest RMSE, but with a very large negative bias. The PSD upgrade shows the largest RMSE of liquid 
water path prediction, although its bias is the smallest. In contrast, the combination of the PSD and the CDNC 
upgrades shows the smallest bias in ice water path prediction but a larger RMSE of the ice water path prediction. 
These results indicate that the global mean liquid and ice water paths are very different between the ERA5 and 
SHiELD. Note that we use ERA5 to evaluate liquid water path and ice water path prediction because this is the 
only reliable validation data set available for the entire forecast time period. More reliable direct observations will 
be used for this purpose in the future.

There are still some caveats for the GFDL MP v3. For example, the prediction of 500 hPa temperature tends 
to be worse (lower ACC and larger warm bias) than that in the GFDL MP v2. This bias has been identified in 
SHiELD for a long time. A possible reason is that the convective heating of the middle Troposphere is too strong, 
and radiative cooling is not enough to compensate. Further investigation is still needed to alleviate this bias. 
Middle, low, and total cloud fractions are under-predicted in SHiELD regardless of the version of the GFDL 
MP used. We plan to extend our cloud fraction diagnosis in the GFDL MP to include sub-grid terrain and static 
energy to better represent sub-grid variability, especially over complex terrain. We are also working on a more 
physically-motivated definition of parameters in the PSD (e.g., μ > 1 for cloud ice and precipitation particles) 
using observations from flights and incorporating the effects of temperature, wind, and pressure on the PSD. 
This aims to create a more realistic relationship between meteorological fields and PSD from observational data, 
and to resolve the degradation of upper-tropospheric biases in temperature and humidity. All PSDs defined in the 
GFDL MP are currently based on the spherical geometry assumption. Some studies have shown a large differ-
ence in PSDs using non-spherical geometry assumption (Wu and McFarquhar (2016) and references therein). 
Future development will take this into account. We also plan to eliminate the low bias in low-to-middle latitudes 
and high bias in high latitudes, of liquid water path, and to improve the seamlessness of the GFDL MP across 
space and time scales, as appropriate for the wide range of applications of SHiELD, GFS, and Unified Forecast 
System (UFS) from convective-scale to seasonal prediction. We also will consider a double-moment extension of 
the GFDL MP if it improves the model's prediction skill, which includes the cloud water activation using actual 
aerosol mass, cloud ice nucleation.

Appendix A:  The GFDL Cloud Microphysics Version 3
The third version of the GFDL MP follows version 1 (Zhou et al., 2019) and version 2 (Harris, Zhou, et al., 2020). 
This new version of the GFDL MP features three major upgrades: (a) the code is entirely reorganized, optimized, 
and modularized into functions, (b) there are various scientific modifications to the microphysical processes, and 
(c) several optional definitions and microphysical processes are added. The scientific modifications used for this 
paper include:

1.	 �Redefined supersaturation in the ice processes to use the same saturation tables as other microphysical 
processes, ensuring consistency;

2.	 �Allow cloud water autoconversion in the larger temperature range (>−40°C) liquid water exists;
3.	 �Split rain evaporation and accretion more physically and consistently;
4.	 �Remove redundant cloud ice melting before falling;
5.	 �Remove several unnecessary temperature limits and ensure positive hydrometeor specific ratios;
6.	 �Remove time step splitting between fast saturation adjustment and full microphysics;
7.	 �Combine snow and graupel for snow effective radius diagnosis, to include the radiative effect of graupel.
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There are also many options added to the GFDL MP not used in this paper but that can be used in other applica-
tions of SHiELD (T-SHiELD, C-SHiELD, and S-SHiELD), toward unified modeling in which there is a single 
modeling system with one code, one executable, and one workflow (Harris, Zhou, et  al.,  2020). Those new 
options include:

1.	 �New cloud fraction diagnostic schemes;
2.	 �New cloud ice nucleation schemes;
3.	 �New cloud ice generation schemes;
4.	 �New cloud ice fall velocity diagnostic schemes;
5.	 �New cloud water and cloud ice diagnostic effective radii schemes;
6.	 �New radar reflectivity diagnostics;
7.	 �Wegener-Bergeron-Findeisen process;

Appendix B:  Quantities Characterizing Cloud Parameters
The particle concentration (N, unit: m −3), effective diameter (Deff, unit: m), optical extinction (β, unit: m −1), mass 
specific ratio (q, unit: kg kg −1), radar reflectivity factor (Z, unit: m 3), and terminal velocity (V, unit: m s −1) can be 
calculated by integrating the (particle size distribution) PSD over all diameters:
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Where v = αD β is approximately written as power-law relation following Straka (2009). The density (ρ′), leading 
coefficient α, and the power β of each hydrometeor category are listed in Table 1. ρ is the density of air. In the 
single-moment case where the mass specific ratio (q) is a prognostic variable, the slope parameter (λ) can be 
derived from Equation B4:
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Appendix C:  Microphysical Processes
Accretion between each two falling hydrometeor categories follows Wisner et  al.  (1972). The accretion rate 
between cloud x and y (Pxacy, accretion of y by x, unit: kg kg −1 s −1) is reformulated after putting the gamma distri-
bution in and integrating the particle size from zero to infinity:
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where Vx and Vy are the terminal velocities of cloud x and y, respectively. Exy is the collection efficiency between 
cloud x and y. Specifically, Erw = 0.35, Eri = 1.0, Esw = 1.0, Esi = 0.35, Esr = 1.0, Egw/Ehw = 1 × 10 −4, Egi/
Ehi = 0.05, Egr/Ehr = 1.0, and Egs/Ehs = 0.01. This formula can be simplified when one of the two hydrometeor 
categories (e.g., y) does not fall and is distributed mono-dispersedly as:
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The exponential case (μ = 1) of Equations C1 and C2 are widely used in the Y. Lin et al. (1983) scheme and in 
early versions of the GFDL MP scheme. Some studies (Mizuno, 1990; Murakami, 1990) have pointed out that 
Vx and Vy are simplified as mean terminal velocities. If cloud x and y have a broad velocity spectra, accretion rate 
Pxacy is non-zero when Vx = Vy. The formula proposed in Mizuno (1990); Murakami (1990) will be implemented 
to the GFDL MP in the near future.

Evaporation, sublimation and deposition follow Byers (1965). The evaporation/sublimation/deposition rate (PESD, 
unit: kg kg −1 s −1) is reformulated after putting the gamma distribution in and integrating the particle size from 
zero to infinity:
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where S is the ratio between saturated mixing ratio of water vapor (qsat) and water vapor mixing ratio (qv), A and 
B are thermodynamics terms defined as:
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where L is the latent heat coefficient, Ka = 2.36 × 10 −2 J m −1 s −1 K −1 is the thermal conductivity of air, Rv is gas 
constant of water vapor, T is air temperature, and ψ = 2.11 × 10 −5 m 2 s −1 is diffusivity of water vapor.

The ventilation coefficient (Vf) in Equation C3 is defined followed Beard and Pruppacher (1971). After putting 
the gamma distribution in and integrating the particle size from zero to infinity, Vf is reformatted as:
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where ν = 1.259 × 10 −5 m 2 s −1 is the kinematic viscosity of air and Sc = ν/ψ is the Schmidt number.

The melting process follows Mason (1971). The melting rate (Pmelt, unit: kg kg −1 s −1) is reformulated after putting 
the gamma distribution in and integrating the particle size from zero to infinity:
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where T0 is the freezing temperature.

At last, the rain freezing process follows Wisner et al. (1972). The freezing rate (Pfr, unit: kg kg −1 s −1) is reformu-
lated after putting the gamma distribution in and integrating the particle size from zero to infinity:

��� = ∫ ∞
0

�2

36
�6 �

′

�
�′ exp

[

�′ (�0 − � ) − 1
]

� (�) ��

= �2

36
�0

�′

�
�′ exp

[

�′ (�0 − � ) − 1
] Γ (� + 6)

��+6
,

� (C8)

where A′ = 0.66 K −1 and B′ = 100 m −3 s −1 are two constant parameters following Bigg (1953).
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The following microphysical processes remain the same from GFDL MP v2: (a) condensation and evaporation of 
cloud water, (b) deposition and sublimation of cloud ice, (c) cloud ice freezing and melting, (c) cloud water auto-
conversion, (e) cloud ice aggregation or autoconversion, (f) snow aggregation or autoconversion. Future GFDL 
MP development will include the particle size distribution to these remaining processes.

Data Availability Statement
The source codes of SHiELD are available at https://doi.org/10.5281/zenodo.5800223. The corresponding data 
is available at https://doi.org/10.5281/zenodo.5800259. The COSP2 software package can be accessed from 
https://github.com/CFMIP/COSPv2.0. The MERRA2 data can be obtained from https://goldsmr5.gesdisc.
eosdis.nasa.gov/data. The ERA5 data can be obtained from https://cds.climate.copernicus.eu/#!/search?tex-
t=ERA5&type=dataset. The CALIPSO-GOCCP data can be obtained from https://climserv.ipsl.polytechnique.
fr/cfmip-obs/Calipso_goccp.html. The GPM data can be obtained from https://disc.gsfc.nasa.gov/datasets/
GPM_3IMERGHH_06/summary?keywords=gpm%20imerg.
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